tion which can exist among these parameters for certain values of them; if $\chi_{s}=0, \omega_{s}$ and φ_{s} rotations are equivalent, and a matrix singularity results. For small values of χ_{s}, the high correlation hampers the refinement. The same problem occurs if three other rotations (e.g. about mutually orthogonal axes) are chosen as parameters instead of ω_{s}, χ_{s} and φ_{s}.

A clue to a reliable automation of the procedure is given in Busing's (1970) remark that the orientation parameters of the BL method 'simply define the orthogonal matrix \mathbf{U} and need not correspond to any reflections actually observed'. Indeed, we can take this further: they need not correspond even to points of the reciprocal lattice, i.e. to reflections with integral indices.

To take advantage of this, we can define the initial orienting reflection angles to be $\omega_{1}=\chi_{1}=\varphi_{1}=\omega_{2}=\chi_{2}=0$, $\varphi_{2}=90^{\circ}$. The corresponding non-integral 'indices' are derived from the initial UB matrix: from BL equations (19) and (22), the desired indices are given by

$$
\mathbf{U B h}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \text { and }\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

respectively, and are thus six of the elements of $V=(\mathbf{U B})^{-1}$, viz v_{11}, v_{21}, v_{31} for the first, and v_{12}, v_{22}, v_{32} for the second dummy reflection (v_{13}, v_{23}, v_{33} represents a dummy reflection with $\omega=0, \chi=90^{\circ}$ and arbitrary φ). The three parameters χ_{1}, φ_{1} and χ_{2} are refined, together with the cell parameters ($1-6$, depending on symmetry constraints) by the standard BL method. It should be noted (as is stated in BL) that, after the refinement, the two vectors corresponding to the orienting 'reflections' will no longer lie exactly in the equatorial plane. This is immaterial, as the purpose of refining the three orientation parameters is purely to obtain the best estimate for the matrix \mathbf{U} subject to the unit-cell symmetry constraints, i.e. for the matrix which minimizes the
least-squares function $\sum w \Delta^{2}$, where $\Delta=y_{\text {obs }}-y_{\text {calc }}$, and y is, in turn, $2 \theta, \omega$, and χ for each centred reflection (BL's type 1 , 3 and 5 observations). We use a weighting scheme whereby $w=1$ for $\chi, 2$ for 2θ, and 4 for ω, which roughly reflects the relative precisions obtained for these measurements in our reflection centring method.

We have included this 'automated BL' method in the software for our four-circle diffractometer, written in Extended Basic for Data General Eclipse and Nova computers (Clegg, 1981). Reflection-angle data are obtained by an automatic centring routine and held on a computer disc file together with preliminary parameters. The only input required from the user is a command to perform refinement and a code number specifying the crystal symmetry. The method is indeed considerably slower (by a factor of about $5-15$, depending on symmetry) than the Tichy method, which is also incorporated in the program, but it is just as simple to use. In any case, the slower refinement is no great drawback, as this refinement is performed normally only once for each crystal under investigation.

References

Busing, W. R. (1970). Crystallographic Computing, edited by F. R. AHMED, pp. 319-330. Copenhagen: Munksgaard.

Busing, W. R. \& Levy, H. A. (1967a). Acta Cryst. 22, 457-464.
Busing, W. R. \& Levy, H. A. (1967b). Report ORNL-4054. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
Clegg, W. (1981). Acta Cryst. A37, C313-C314.
Gabe, E. J. (1980). Computing in Crystallography, edited by R. Diamond, S. Ramaseshan \& K. Venkatesan, pp. 1.01-1.31. Bangalore: Indian Academy of Sciences.

Hamilton, W. C. (1974). International Tables for X-ray Crystallography, Vol. IV, pp. 273-284. Birmingham: Kynoch Press.
Shoemaker, D. P. \& Bassi, G. (1970). Acta Cryst. A26, 97-101.
SPARKS, R. A. (1976). Crystallographic Computing Techniques, edited by F. R. Ahmed, pp. 452-467. Copenhagen: Munksgaard.
Tıchý, K. (1970). Acta Cryst. A26, 295-296.

Acta Cryst. (1983). A39, 171-173

Diffraction by a one-dimensionally disordered crystal. III. Relation between the matrix and the probability tree methods.* By Jiro Kakinoki, Higashi 1-17, Hagiwaradai, Kawanishi 666, Japan

(Received 5 January 1982; accepted 16 August 1982)

Abstract

The calculation of the diffraction from a one-dimensionally disordered crystal is shown to be easier using the matrix (M) method than with the probability tree (PT) method. If the order of the difference equation is high, an analytical solution cannot be obtained by the PT method unless the model is highly simplified. There is no such limitation in the M method.

From the relations between m th and $(m+1)$ th layers in the probability trees in Fig. 1 of Howard (1977), the P matrix (Kakinoki, 1967) is obtained as

[^0]
where Howard's second parameter q is used and where A^{+}, B^{+}and C^{+}denote the original or 2nd, 4th, \ldots inserted layers and A^{*}, B^{*} and C^{*} denote the 1st, 3rd, \ldots inserted layers.
(C) 1983 International Union of Crystallography

There are five steps for calculating the intensity equation.
Step 1: From \mathbf{P}, we have

$$
\mathbf{P}_{1}=\left(\begin{array}{cc}
1-p & 0 \\
q & 0
\end{array}\right) \quad \text { and } \quad \mathbf{P}_{2}=\left(\begin{array}{cc}
0 & p \\
1-q & 0
\end{array}\right)
$$

Step 2: From the relations $\mathbf{w} \tilde{\mathbf{I}}=1$ and $\mathbf{w}\left(\mathbf{P}_{1}+\mathbf{P}_{2}\right)=\mathbf{w}$, where $\mathbf{w}=\left(w^{+} w^{*}\right)$ and $\mathbf{1}=\left(\begin{array}{ll}1 & 1\end{array}\right)$, we obtain

$$
\mathbf{w}=\frac{1}{1+p}(1 p)
$$

Step 3: From $T_{m}=\mathbf{w}\left(\varepsilon \mathbf{P}_{1}+\varepsilon^{*} \mathbf{P}_{2}\right)^{m} \tilde{\mathbf{1}}$ with $\varepsilon=$ $\exp \{(2 \pi / 3) i(h-k)\}, T_{0}=1$ and

$$
\begin{equation*}
T_{1}=\frac{1}{1+p}\left\{\varepsilon(1-p+p q)+\varepsilon^{*} p(2-q)\right\} \tag{1}
\end{equation*}
$$

Step 4: The secular equation

$$
F(x)=\operatorname{det}\left(x \mathbf{E}-\varepsilon \mathbf{P}_{1}-\varepsilon^{*} \mathbf{P}_{2}\right)
$$

is

$$
\begin{aligned}
F(x) & =a_{0} x^{2}+a_{1} x+a_{2} \\
& =x^{2}-\varepsilon(1-p) x-p\{q+\varepsilon(1-q)\}=0
\end{aligned}
$$

Therefore, $a_{0}=1, a_{1}=-\varepsilon(1-p)$ and $a_{2}=-p\{q+\varepsilon(1-q)\}$.
Step 5: The intensity equation is given by

$$
D(\varphi)=\frac{D_{0}+D_{1} e^{i \varphi}+\text { complex conjugate }}{C_{0}+\left(C_{1} e^{i \varphi}+C_{2} e^{i 2 \varphi}\right)+(\text { complex conjugate })}
$$

where

$$
\begin{aligned}
& C_{0}=1+a_{1} a_{1}^{*}+a_{2} a_{2}^{*}, \\
& C_{1}=a_{1}^{*}+a_{1} a_{2}^{*} \\
& C_{2}=a_{2}^{*} \\
& D_{0}=1+a_{1} a_{1}^{*}-a_{2} a_{2}^{*}+a_{1} T_{1}^{*}+a_{1}^{*} T_{1} \\
& D_{1}=a_{1}^{*}+a_{2}^{*} T_{1}+T_{1}^{*},
\end{aligned}
$$

therefore

$$
D(\varphi)=\frac{3 p(1-p+p q)}{1+p} \times \frac{S}{Q}
$$

with $S=2-q(1+p)-2(1-q) \cos \left(\varphi \mp 60^{\circ}\right)$

$$
\begin{aligned}
Q=2 & \left(1-p+p^{2}\right)-3 p^{2} q(1-q) \\
& +(1-p)(1+2 p-3 p q) \cos \varphi+p(1-3 q) \cos 2 \varphi \\
& \mp \sqrt{3}\{(1-p)(1+p q) \sin \varphi+p(1-q) \sin 2 \varphi\}
\end{aligned}
$$

On the other hand, the process of getting $D(\varphi)$ with $q=p$ by the PT method of Howard (1977) is as follows:
(i) By inspection of probability trees with $q=p$, Howard derived

$$
\left\{\begin{aligned}
& G_{1}+G_{2}+ G_{3}+G_{4}+G_{5}+G_{6}=1, \quad P_{m}^{A}=G_{1}+G_{4} \\
& P_{m+1}^{A}=p G_{2}+(1-p) G_{3}+(1-p) G_{5}+p G_{6} \\
& P_{m+2}^{A}= p G_{1}+(1-p)^{2} G_{2}+p(1-p) G_{3} \\
&+\left(1-2 p+2 p^{2}\right) G_{4}+p(1-p) G_{5} \\
& \quad+p(1-p) G_{6} \\
& \\
& P_{m+3}^{A}=\left(1-3 p+4 p^{2}-2 p^{3}\right) G_{1}+p\left(2-4 p+3 p^{2}\right) G_{2} \\
&+p\left(1-p^{2}\right) G_{3}+2 p\left(1-2 p+p^{2}\right) G_{4} \\
&+p\left(1-p^{2}\right) G_{5}+\left(1-3 p+4 p^{2}-p^{3}\right) G_{6}
\end{aligned}\right.
$$

(ii) Eliminating the six $G_{i} s$ from these equations, Howard obtained the difference equation and its characteristic equation $F_{H}(x)$ as

$$
\begin{aligned}
P_{m+3}^{A} & +(1-2 p) P_{m+2}^{A}+(1-2 p) P_{m+1}^{A} \\
& +p\left(1-3 p+3 p^{2}\right) P_{m}^{A}=1-p-p^{2}+p^{3}
\end{aligned}
$$

Therefore, $F_{H}(x)=x^{3}+(1-2 p) x^{2}+(1-2 p) x+p(1-$ $\left.3 p+3 p^{2}\right)=0$.
(iii) The solution of $F_{H}(x)=0$ is $X_{1}=-p$ and $X_{2}=p+$ $\varepsilon(1-p)=X_{3}^{*}$.
(iv) Howard determined K_{i}, L_{i} and M_{i} in his expressions as

$$
P_{m}^{A}=\frac{1}{3}+\sum_{i=1}^{3} K_{l} X_{l}^{m}, \quad P_{m}^{B}=\frac{1}{3}+\sum_{i=1}^{3} L_{i} X_{i}^{m}
$$

and

$$
\begin{equation*}
P_{m}^{C}=\frac{1}{3}+\sum_{l=1}^{3} M_{l} X_{l}^{m} \tag{2}
\end{equation*}
$$

(v) Using X_{i}, K_{i}, L_{i} and M_{i}, Howard derived his intensity equation as

$$
D_{H}(\pi l)=\frac{3 p(1-p)}{2(1+p)\left(1-4 p+7 p^{2}\right)}\left(\frac{U}{V}+\frac{W}{Y}\right)
$$

with $U=(1+p)\left(1-p+4 p^{2}\right) \pm 2 p(1-2 p) \sqrt{3} \sin \pi l$

$$
\begin{aligned}
V=1 & +p^{2}+2 p \cos \pi l \\
W=2 & -9 p+9 p^{2}+2 p^{3}-3(1-p)(1-2 p) \cos \pi l \\
& \mp(1-2 p)(1-3 p) \sqrt{3} \sin \pi l \\
Y=2 & -3 p+3 p^{2}+(1-3 p) \cos \pi l \\
& \mp(1-p) \sqrt{3} \sin \pi l
\end{aligned}
$$

which can be transformed to our $D(\varphi)$ with $q=p$ and $\varphi=\pi l$.
Thus, the PT method is unnecessarily laborious and if the order of the characteristic equation becomes higher, it is impossible to get an analytical solution. This limits the model.

On the contrary, in the matrix method, once we determine \mathbf{P}_{1} and \mathbf{P}_{2} by the model, $D(\varphi)$ is derived by routine matrix calculation. Moreover, we need not use $G_{i}, P_{m}^{A}, P_{m}^{B}, P_{m}^{C}, K_{i}$, L_{l} and M_{l}. But they are easily derived by matrices as follows:
(i) $P_{m+n}^{A}=\boldsymbol{g} \tilde{\alpha}_{n}$ with

$$
\left\{\begin{array}{l}
\mathbf{g}=\left(G_{1} G_{4} G_{2} G_{5} G_{3} G_{6}\right) \\
\boldsymbol{\alpha}_{0}=\left(\begin{array}{llll}
1 & 1 & 0 & 0
\end{array}\right) \text { and } \tilde{\boldsymbol{a}}_{n}=\mathbf{P} \tilde{\mathbf{a}}_{n-1}
\end{array}\right.
$$

(ii) Putting $T_{m}=c_{1} X_{1}^{m}+c_{2} X_{2}^{m}$, we solve c_{i} by (1) with $q=p$ and $T_{0}=1$. Therefore

$$
\left\{\begin{array}{l}
c_{1}=3 p[p(1+p)-\varepsilon(1-p)(1-2 p)] / R \\
c_{2}=\left[1-3 p+4 p^{3}+\varepsilon 3 p(1-p)(1-2 p)\right] / R
\end{array}\right.
$$

with $R=(1+p)\left(1-4 p+7 p^{2}\right)$.
From the physical meaning of T_{m}, i.e. $T_{m}=P_{m}^{A}+\varepsilon P_{m}^{B}+$ $\varepsilon^{*} P_{m}^{c}$, we get

$$
3 P_{m}^{A}=1+T_{m}+T_{m}^{*}, \quad 3 P_{m}^{B}=1+\varepsilon^{*} T_{m}+\varepsilon T_{m}^{*}
$$

and

$$
3 P_{m}^{C}=1+\varepsilon T_{m}+\varepsilon^{*} T_{m}^{*}
$$

Hence, from (2), we have:

$$
\begin{array}{cl}
3 K_{1}=c_{1}+c_{1}^{*}, & 3 K_{2}=3 K_{3}^{*}=c_{2} \\
3 L_{1}=\varepsilon^{*} c_{1}+\varepsilon c_{1}^{*}, & 3 L_{2}=3 L_{3}^{*}=\varepsilon^{*} c_{2} \\
3 M_{1}=\varepsilon c_{1}+\varepsilon^{*} c_{1}^{*}, & 3 M_{2}=3 M_{3}^{*}=\varepsilon c_{2}
\end{array}
$$

Furthermore, $F_{H}(x)$ and $F(x)$ with $q=p$ are expressed as

$$
F_{H}(x)=\left(x-X_{1}\right)\left(x-X_{2}\right)\left(x-X_{2}^{*}\right)=0
$$

and

$$
F(x)=\left(x-X_{1}\right)\left(x-X_{2}\right)=0
$$

The order of $F_{H}(x)$ is higher than that of $F(x)$ with $q=p$.
In the case of $q \neq p$, the characteristic equation $F_{H}^{\prime}(x)$ was not shown by Howard but it is given by $F_{H}^{\prime}(x)=F(x) F^{*}(x)$ and then the difference equation is

$$
\begin{aligned}
P_{m+4}^{A} & +(1-p) P_{m+3}^{A}+\left(1-p+p^{2}-3 p q\right) P_{m+2}^{A} \\
& +p(1-p)(2-3 q) P_{m+1}^{A}+p^{2}\left(1-3 q+3 q^{2}\right) P_{m}^{A} \\
& =1-2 p q+p^{2} q^{2} \\
& =(\text { sum of five coefficients }) / 3
\end{aligned}
$$

In the PT method, $F_{H}^{\prime}(x)=F(x) F^{*}(x)=0$ must be solved but in the matrix method, the necessary quantities are not the roots but the coefficients in $F(x)=0$.

Thus, the matrix method is superior to the PT method.

Acta Cryst. (1983). A39, 173

Restrictions on the components of third-order tensors for site symmetry $\mathbf{3 m}$: Correction of an error in Volume IV of International Tables for X-ray Crystallography. By C. Scheringer, Institut für Mineralogie der Universität Marburg, D 3550 Marburg, Federal Republic of Germany

(Received 18 August 1982; accepted 6 September 1982)

Abstract

For site symmetry $3 m$, the covariant components 112 and 122 of the third-order tensors are not independent, and in row C38* of Table 5.5C (p. 329) of the International Tables for X-ray Crystallography [(1974), Vol. IV. Birmingham: Kynoch Press] the symbol D should twice be replaced by $-A / 2$.

The result was established by applying the $3 m$ symmetry operations which hold for the covariant components of the third-order tensor, and was confirmed by calculating the covariant components from the contravariant components. All other information is given in the $A b s t r a c t$.

Acta Cryst. (1983). A39, 173 Corrections to Table 2.2B of Volume IV of International Tables for X-ray Crystallography. By Richard E. Marsh and Kirby J. Slagle, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, USA

(Recived 18 October 1982; accepted 8 November 1982)

Abstract

Corrections are given for two of the coefficients for the analytical approximations to X-ray scattering factors in Table 2.2B of International Tables for X-ray Crystallography [(1974), Vol. IV. Birmingham: Kynoch Press]. For Ru^{+4} (p. 100), the coefficient b_{3} should be 0.036495 rather than 0.36495 ; for Bi^{+5} (p. 101), the coefficient b_{2} should be 0.039042 rather than 0.39042 .

All information is given in the Abstract. We thank Dr Don T. Cromer for confirming that the numbers were indeed misprinted as indicated.

[^0]: * Part II: Kakinoki (1967).

 0567-7394/83/010171-03\$01.50

