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tion which can exist among these parameters for certain 
values of them; if Xs = 0, tos and tp s rotations are equivalent, 
and a matrix singularity results. For small values of Xs, the 
high correlation hampers the refinement. The same problem 
occurs if three other rotations (e.g. about mutually orthog- 
onal axes) are chosen as parameters instead of tos, ,~s and 
tPs. 

A clue to a reliable automation of the procedure is given in 
Busing's (1970) remark that the orientation parameters of 
the BL method 'simply define the orthogonal matrix U and 
need not correspond to any reflections actq~ally observed'. 
Indeed, we can take this further: they need not correspond 
even to points of the reciprocal lattice, i.e. to reflections with 
integral indices. 

To take advantage of this, we can define the initial 
orienting reflection angles to be tot = ,~1 = t& = 092 = X2 = 0, 
tp2 = 90 °. The corresponding non-integral 'indices' are 
derived from the initial UB matrix: from BL equations (19) 
and (22), the desired indices are given by 

(!) UBh = and 

respectively, and are thus six of the elements of V = (UB) -t, 
viz v11, v21, v31 for the first, and v12, v22, v32 for the second 
dummy reflection (v13, v23, v33 represents a dummy re- 
flection with to = 0, X = 90° and arbitrary tp). The three 
parameters XI, <& and ;t2 are refined, together with the cell 
parameters (1-6, depending on symmetry constraints) by the 
standard BL method. It should be noted (as is stated in BL) 
that, after the refinement, the two vectors corresponding to 
the orienting 'reflections' will no longer lie exactly in the 
equatorial plane. This is immaterial, as the purpose of 
refining the three orientation parameters is purely to obtain 
the best estimate for the matrix U subject to the unit-cell 
symmetry constraints, i.e. for the matrix which minimizes the 

least-squares function Y wA 2, where A = Yobs -- Yealc, and y is, 
in turn, 20, to, and X for each centred reflection (BL's type 1, 
3 and 5 observations). We use a weighting scheme whereby 
w = 1 for X, 2 for 20, and 4 for to, which roughly reflects the 
relative precisions obtained for these measurements in our 
reflection centring method. 

We have included this 'automated BL' method in the 
software for our four-circle diffractometer, written in 
Extended Basic for Data General Eclipse and Nova 
computers (Clegg, 1981). Reflection-angle data are obtained 
by an automatic centring routine and held on a computer 
disc file together with preliminary parameters. The only input 
required from the user is a command to perform refinement 
and a code number specifying the crystal symmetry. The 
method is indeed considerably slower (by a factor of about 
5-15, depending on symmetry) than the Tich~, method, 
which is also incorporated in the program, but it is just as 
simple to use. In any case, the slower refinement is no great 
drawback, as this refinement is performed normally only 
once for each crystal under investigation. 
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Abstract 

The calculation of the diffraction from a one-dimensionally 
disordered crystal is shown to be easier using the matrix (M) 
method than with the probability tree (PT) method. If the 
order of the difference equation is high, an analytical solution 
cannot be obtained by the PT method unless the model is 
highly simplified. There is no such limitation in the M 
method. 

From the relations between mth and (m + 1)th layers in the 
probability trees in Fig. 1 of Howard (1977), the P matrix 
(Kakinoki, 1967) is obtained as 

* Part Ih Kakinoki (1967). 
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p =  

A + A* B + B* C + C* 

q O . l - q  0 . \  

- q  0 0 q  0 

\ q  0 

A ÷ w÷/3 

A* w*/3 

B + w+/3, 

B* w*/3 

C + w+/3 

C* w*/3 

where Howard's second parameter q is used, and where A +, 
B ÷ and C + denote the original or 2nd, 4th . . . .  inserted layers 
and A*, B* and C* denote the 1st, 3rd . . . .  inserted layers. 
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There  are five steps for calcula t ing the intensi ty equat ion.  
Step 1" F r o m  P, we have (0o) Pl = and  P2 = • 

q 1 - - q  

Step 2: F r o m  the relat ions w][ = 1 and w(P  I + P2) = w, 
where  w = (w + w*) and 1 = (1 1), we obta in  

1 
w= ( l p ) .  

l + p  

Step 3: F r o m  T m = w(ePl  + /~*P2) m ]  with e = 
exp{(Zn/3)  i(h - k)}, T O = 1 and 

1 
T~ - {e(1 - p  + pq) + e * p ( 2  - q)}. (1) 

l + p  

Step 4: The  secular  equa t ion  

F(x)  = de t (xE  -- 8P 1 -- t*  Pz) 

F(x )  = a o x  z + a l x  + a2 

= x  2 -  e(1 - - p ) x - - p { q  + 8(1 -- q)} = 0. 

Therefore ,  a o = 1, a 1 = --e(1 - - p )  and  a 2 = --p{q + e(1 --q)}.  
Step 5: T h e  intensi ty  equa t ion  is given by 

D O + D~ e ~'p + complex  con juga te  
D(~o) = 

where  

therefore  

C 0 + ( C  1 e t~ + C2 e t2o) + (complex  conjugate)  

C o =  1 + a la*  + a2 a*, 

C~ = a't + ala*,  

C 2 = a 2 , 

D O = 1 + a la*  - a2a* + aaT* + a * T t  

91  = a* + a * T  l + T~1, 

3p(1 -- p + pq) S 
D(~0) = x - -  

l + p  Q 

wi th  S = 2 - q(1 + p)  - 2(1 - q) cos  (~0 -T- 60 °)  

Q = 2(1 - p  + p2) _ 3p2q(1 _ q) 

+ (1 - p ) ( 1  + 2p - 3pq) cos ~o + p ( 1  - 3q) cos  2q~ 

-T- V~{(1  - p ) ( 1  + p q )  sin ~o + p ( 1  - q) sin 2(o}. 

O n  the  o ther  hand ,  the process  o f  gett ing D(~0) with q = p 
by the  P T  m e t h o d  of  H o w a r d  (1977) is as follows: 

(i) By inspec t ion  of  probabi l i ty  trees with q = p,  H o w a r d  
der ived 

G a + G 2 + G 3 + G 4 + G 5 + G 6 = 1, PA m = G I + G 4, 

A (1 (1 - p )  G 5 + p G  6, P m + I = P G z  + - P )  G3 + 

A (1 p ) 2 G 2 + P ( l _ p ) G  3 Pro+2 = P G I  + - 

+ (1 - 2p  + 2p2) G4 + p ( 1  - p ) G  5 

+ p(1  - p )  G 6, 

A = ( 1 - 3 p +  - Pro+3 4P z 2p3) GI + p (2  4p  + 3p 2) G z 

+ p ( 1  - p 2 )  G 3 + 2p(1 -- 2p  + p 2 )  G 4 

+ p ( 1  - p 2 )  G 5 + (1 - 3p  + 4 p 2 - - p 3 )  G6 • 

(ii) El iminat ing  the six Gts f rom these equat ions ,  H o w a r d  
ob ta ined  the difference equa t ion  and  its character is t ic  
equa t ion  F n ( x )  as 

Pm+3a + (1 - 2p)  Pm+2a + (1 - 2p) Pare+ 1 

+ p(1 - 3p  + 3p 2) PAm = 1 -- p -- p2 + p3. 

Therefore ,  F u ( x )  = x 3 + (1 - 2 p ) x  2 + (1 - 2 p ) x  + p(1  -- 
3p  + 3p 2) = 0. 

(iii) The  solut ion of  F x ( x )  = 0 is X 1 = - p  and X2 = P + 
e(1 - -  p )  = X~' .  

(iv) H o w a r d '  de t e rmined  K t, L~ and  M r in his express ions  
a s  

and  

3 3 

1=1 1=1 

3 

p c  = ,} + y MtXIn .  (2) 
t = 1  

(v) Us ing  X t, K l, L t and M t, H o w a r d  der ived his intensi ty 
equa t ion  as 

Dx(n/ )  = 2(1 + p)(1 -- 4p + 7p 2) + 

with U =  (1 + p ) ( 1  - - p  + 4p 2) _+ 2p(1 -- 2P)V/3 sin nl  

V = l + p 2 + 2 p c o s n l  

W =  2 - 9p + 9p 2 + 2p 3 - 3(1 - p ) ( 1  - 2p) cos lrl 

g- (1 - 2p)(1 - 3P)V/3 sin nl  

Y =  2 - 3p + 3p 2 + (1 -- 3p) cos nl 

-T- ( 1 - p ) v / ]  sin nl, 

wh ich  can  be t r a n s f o r m e d  to our  D(~0) with q = p and ~0 = n/. 
Thus ,  the P T  m e t h o d  is unnecessar i ly  labor ious  and  if the  

o rder  o f  the character is t ic  equa t ion  b e c o m e s  higher ,  it is 
imposs ib le  to get an analyt ical  solut ion.  This  limits the 
model .  

O n  the con t ra ry ,  in the  mat r ix  m e t h o d ,  once  we de te rmine  
P~ and  P2 by the model ,  D(~0) is der ived by rout ine  matr ix  
calculat ion.  Moreover ,  we need no t  use G t, P g ,  Pn  m, p c ,  Kt ' 
L t and M v But  they are easily der ived by mat r ices  as follows: 

(i) P~+,,  = grin with 

g = (G1 G4 G2 G5 G3 Gr) 

a 0 = (1 1 0 0 0 0 )  and  fin = P a n -  I" 

(ii) Pu t t ing  T m = c l X  ~ + c2X~',  we solve c t by (1) with 
q = p and T o = 1. There fo re  

c a = 3 p i p ( 1  + p) - t(1 - - p )  (1 -- 2p) I /R  

c 2 = [1 - 3p  + 4p  a + c3p(1 - p )  (1 - 2p)] /R 

with R = (1 + p)  (1 - 4p  + 7p2). 
F r o m  the physica l  mean ing  of  T m, i.e. Tm = P~ + aPn,,, + 

t .  p c ,  we get 

3PAr,, = 1 + T m + T* ,  3 P~m = 1 + 8 * T  m + nT* 

and  

3 P  c = l  + e T  r e + e * 7 ' * .  
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Hence, from (2), we have: 

3K 1 = c I + c*, 

3Ll = e* c 1 + ec*, 

3M l = ec I + ~* c*, 

3K 2 = 3K~' = c 2, 

3L 2 = 3L~' = t* c 2, 

3M 2 = 3M* = ec 2. 

Furthermore, Fu(x ) and F(x) with q = p are expressed as 

Fx(x  ) = (x -- X,)  (x -- X 2) (x - X~) = 0 

and 

,4 (1 - p  - --P)Pm+3 + + Pro+4 + (1 a p2 3pq)pAm+2 

+p(1 - p )  (2 - 3q)PAm+, +p2(1 -- 3q + 3q2)pam 

= 1 - 2pq +p2q2 

= (sum of five coefficients)/3. 

In the PT method, F~(x) = F(x)F*(x)  = 0 must be solved 
but in the matrix method, the necessary quantities are not the 
roots but the coefficients in F(x) = O. 

Thus, the matrix method is superior to the PT method. 

F(x) = (x -- Xl) (x -- X2) = O. 

The order of FH(x ) is higher than that ofF(x)  with q = p .  
In the case of q 4= p, the characteristic equation F~t(x) was 

not shown by Howard but it is given by F'n(x) = F(x)F*(x)  
and then the difference equation is 
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Abstract 

For site symmetry 3m, the covariant components 112 and 
122 of the third-order tensors are not independent, and in 
row C38" of Table 5.5C (p. 329) of the International Tables 
for  X-ray Crystallography [(1974), Vol. IV. Birmingham: 
Kynoch Press] the symbol D should twice be replaced by 
- A / 2 .  

The result was established by applying the 3m symmetry 
operations which hold for the covariant components of the 
third-order tensor: and was confirmed by calculating the 
covariant components from the contravariant components. 
All other information is given in the Abstract. 
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Abstract 

Corrections are given for two of the coefficients for the 
analytical approximations to X-ray scattering factors in 
Table 2.2B of International Tables for  X-ray Crystal- 
lography [(1974), Vol. IV. Birmingham: Kynoch iaress]. For 
Ru ÷4 (p. 100), the coefficient b 3 should be 0.036495 rather 

0567-7394/83/010173-01501.50 

than 0.36495; for Bi +5 (p. 101), the coefficient b 2 should be 
0.039042 rather than 0.39042. 

All information is given in the Abstract. We thank Dr Don T. 
Cromer for confirming that the numbers were indeed mis- 
printed as indicated. 
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